ASSIGNMENT 1 UNIFORM DISTRIBUTION THEORY 2021 DUE DATE: MARCH 17, 2021

Exercise 1. Show that the sequence

 $\{\frac{0}{1}, \frac{0}{2}, \frac{1}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{0}{5}, \dots\}$

is uniformly distributed modulo one. Hint: Use Weyl's criterion.

Exercise 2. Let $\varphi = (1 + \sqrt{5})/2$ be the golden mean. Show that the sequence $\{\varphi^n : n = 1, 2, 3, ...\}$ is <u>not</u> dense modulo one, in fact that the only limit points are 0 and 1.

Hint: Let $\tilde{\varphi} = (1 - \sqrt{5})/2$. Show $U_n := \varphi^n + (\tilde{\varphi})^n$ is an integer, and hence $\operatorname{dist}(\varphi^n, \mathbb{Z}) \to 0$ as $n \to \infty$.

Exercise 3. Show that as $N \to \infty$,

$$\sum_{n=1}^{N} \frac{\log n}{n} = \frac{1}{2} (\log N)^2 + O(1).$$

Hint: Use Euler's summation formula.